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Motivation

We want to inquire how different rewards make solving a reinforcement

learning (RL) problem easier or harder in the average reward setting.

[JOA10] proposed a complexity measure ofMarkov decision processes

(MDP) called diameter but it depends only on the transitions. We review

and replace it with a reward-sensitive quantity calledmaximum expected

hitting cost (MEHC).

What do wemean by reward informativeness? We can look at so-called

Π-equivalent rewards and compare theirMEHCs.

Potential-based reward shaping (PBRS) [NHR99] provides a way to

constructΠ-equivalent rewards. Can we characterize this set of
equivalent rewards? Yes for a large class ofMDPs.

Highlights

We propose a complexity parameter ofMDPs calledmaximum

expected hitting cost and show that it refines diameter and thus regret

bounds in previous works.

We show that potential-based reward shaping can change theMEHC

of anMDP and thus the regret bound. This results in a set ofMDPs

equivalent with different learning difficulties as measured by regret.

We show thatMEHCs of rewards related by PBRS differ by a factor of

at most two in a large class ofMDPs.

Preliminaries

Finite MDP

A Markov decision process is defined by the tuple M = (S, A, p, r, rmax),
where S is the state space, A is the action space, p is the transition prob-

ability p : S × A → P(S), r is the reward function r : S × A → P([0, rmax])
with mean rewards r̄(s, a) := E[r(s, a)]. Together with an algorithm L, we
get a stochastic process (st, at, rt)t≥0.

Average reward (gain) and regret

Theaccumulated rewardof algorithmLafterT timesteps inMDPM starting

in state s is a random variableR(M,L, s, T ) := ∑T
t=1 rt.

Furthermore, we define the average reward or gain as ρ(M,L, s) :=
limT→∞

1
TE [R(M,L, s, T )].

This can be maximized by some stationary policy and we define the optimal

average reward of M , which we assume to be independent of initial state, as

ρ∗(M) := maxπ:S→A ρ(M, π, s).
We will compete with the expected accumulative reward of an optimal sta-

tionary policy on its trajectory, and define the regret of an learning algorithm

L starting in state s after T time steps as

∆(M,L, s, T ) := Tρ∗(M) − R(M,L, s, T ).

Diameter and maximum expected hiষng cost

Suppose in the stochastic process induced by following a policy π inMDP

M , the time to hit state s′ starting at state s is hs→s′(M, π). We define the

diameter ofM [JOA10] to be

D(M) := max
s,s′∈S

min
π:S→A

E [hs→s′(M, π)] .

Wedefine themaximum expected hitting cost ofM to be

κ(M) := max
s,s′∈S

min
π:S→A

E

hs→s′(M,π)−1∑
t=0

rmax − rt

 .

Observe thatMEHC is a smaller parameter, that is, κ(M) ≤ rmaxD(M),
since for any s, s′, π, we have rmax − rt ≤ rmax.

Π-equivalent rewards
These rewards assign the same average rewards to the same policies, i.e.,

ρ(M1, π, s) = ρ(M2, π, s)whereM1 andM2 differ only in their rewards.

Potenধal-based reward shaping

Given a potential ϕ : S → R, define rϕ
t := rt − ϕ(st) + ϕ(st+1).

Extended MDP

After visiting state-action (s, a) forN(s, a)-many times, we can establish

that a confidence interval for both its mean reward r̄(s, a) and its transition
p(·|s, a).

Bδ(s, a) :=
{
r′ ∈ R : |r′ − r̂(s, a)| ≤ rmax b(δ, N(s, a))

}
∩ [0, rmax]

and the statistically plausible transitions are

Cδ(s, a) :=
{
p′ ∈ P(S) : ||p′(·) − p̂(·|s, a)||1 ≤ b(δ, N(s, a))

}
.

Wedefine an extendedMDP M+ := (S, A+, p+, r+), where the action space
A+ is a union over state-specific actions

A+
s := {(a, p′, r′) : a ∈ A, p′ ∈ Cδ(s, a), r′ ∈ Bδ(s, a)}.

For transition and rewards,

p+
(

· |s, (a, p′, r′)
)

:= p′(·) r+
(
s, (a, p′, r′)

)
:= r′.

Results

Lemma (MEHC upper bounds the span of values, ''opধmism'')

Assuming that the actual MDPM is in the extendedMDPM+, i.e., r̄(s, a) ∈
Bδ(s, a) and p(·|s, a) ∈ Cδ(s, a) for all s ∈ S, a ∈ A, we have

max
s

ui(s) − min
s′

ui(s′) ≤ κ(M)

where ui(s) is the i-step optimal undiscounted value of state s.

MEHC replaces diameter and leads to tighter problem-dependent regret

bounds on UCRL2 (and other algorithms), Õ(κS
√

AT ).

Theorem (MEHC under PBRS)

Given an MDP M with finite maximum expected hitting cost κ(M) < ∞
and an unsaturated optimal average reward ρ∗(M) < rmax, the maximum

expected hitting cost of any PBRS-parametrized MDP Mϕ is bounded by a

multiplicative factor of two

1
2
κ(M) ≤ κ(Mϕ) ≤ 2κ(M).

Toy example
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Figure 1: Circular nodes represent states and square nodes represent actions. The solid

edges are labeled by the transition probabilities and the dashed edges are labeled by the

mean rewards. Furthermore, rmax = 1. For concreteness, one can consider setting α =
0.11, β = 0.1, ε = 0.05. a1 is the ``stay'' action and a2, the ``sometimes switch'' action.

Obviously it is best to go to s2 and then stay. However, taking a2 at state s1
usually looks as bad as taking a1. We can differentiate the actions better by

shapingwith a potential ofϕ(s1) := 0 andϕ(s2) := (α−β)/2ε. The shapedmean

rewards become,

r̄ϕ(s1, a2) = 1−α−ϕ(s1)+εϕ(s2)+(1−ε)ϕ(s1) = 1−(α+β)/2 > 1−α = r̄ϕ(s1, a1)
and

r̄ϕ(s2, a2) = 1−β−ϕ(s2)+εϕ(s1)+(1−ε)ϕ(s2) = 1−(α+β)/2 < 1−β = r̄ϕ(s2, a1).
Themaximum expected hitting cost becomes smaller

κ(Mϕ) = max
{

α, β, ϕ(s1) − ϕ(s2) + α

ε
, ϕ(s2) − ϕ(s1) + β

ε

}

= max
{

α, β,
α + β

2ε
,

α + β

2ε

}

= α + β

2ε
<

α

ε
= κ(M).

Open questions

How can we find helpful potentials, when given available verbal

instructions or demonstrations? Will PBRS bemore impactful in a

different setting? Under a different algorithm?
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