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Motivations Communication protocol Formalism
Com.put.ationally resourceful entities could monitor.ostensibly private com- Alice wants to send a secret message to Bob via a channel monitored by Eve Total variation distance (TVD)
munications at scale. The mere presence of encryption may raise suspicion who expects to see fluent text. 1
in the eavesdropper. d(p,q) = supper |p(F) — q(E)| = 5 Xex |p(z) — q(z)]
. . o " the cookie is in the fup drawer ,, plaintext It takes at least (1/d(p.g)?) samples to distinguish two distributions p and g.
= Canwe hide secrets in natural text? Yes, via linguistic steganography. A , -
language model (LM) lets us sample fluent text. Alice @j) !&Wwf | Decomposition of TVD
t
_ .o : 5 : \/
HOV\|/ har.d S |ttdq tell StegTa\r/wggraﬁhm ﬁext from Euznt te|><t. QuantlT.ed. by 011 000( 1000l ciphertex t Suppose the true LM of the monitored channel is £*, and we have access to
tota var!at|on stance ( ), the existing methods rely on unrealistic @ — _ some base LM/, then running encoding algorithm A, induces an effective LM
assumptions. Ll | hide / spee | Al = Ey[A(b)]. The TVD between the effective LM and the true LM
= Can we do better? Yes, we propose a method with a stronger guarantee. \ V] . §
S Eve \ Winters in Chicago are [u”‘g ﬂm\/cf{ (o{v/(.v J‘fﬁjofﬁx{/fowm‘e%f d(€ ,Q[[f]) < d(f ’g) ™ d(é,%l[é])
_ _ ] — By Pinsker’s inequality, a bound via the KL divergence (in bits) on each step
Highlights @L@ ek / extrer] o
V/ 11
‘ ox d(£,A[¢] —>» D S bl P] - [sp: AL ).
= We quantify statistical imperceptibility with total variation distance olfoooliolool| Cipheréext ( \ Z KL( Js<i Al { 5<%l ]D
(TVD) between language models. We study the TVD of several Bob P y Ap—
encoding algorithms [FJA17, YGC* 18] and point out the implicit Cﬁ) l_,{LL) 0 bl
assumption for them to be near-imperceptible. ) v ) [ re pen problems
= \We use a state-of-the-art transformer-based, subword-level LM, the cookie is in the fip drauor. pleintext
GPT-2-117M [RWCT19], to empirically evaluate the plausibility of = Can the eavesdropping adversary achieve O(1/a?)? That s, is there a
these assumptions. detection algorithm matching the lower bound? This seems to require
= \We propose an encoding algorithm patient-Huf fman with strong Al_gorithm some extra assumptions on fluent text.
relative statistical imperceptibility. . . . = The entropy of fluent text is not uniform over steps and it reflects a kind
Be patient and skip encoding steps that can expose the stegosystem. Choose of structure.
. or € o(1/t) for each step, so the TVD is bounded.
Intuition
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