Loop Estimator for Discounted Values in Markov Reward Processes

Falcon Z. Dai Matthew R. Walter \{dai, mwalter\}@ttic.edu

Toyota Technological Institute at Chicago
AAAI 2021

Preliminaries: MRP

Parameters of the Markov reward process

Preliminaries: MRP

Parameters of the Markov reward process

- state space $\mathcal{S}:=\{1, \cdots, S\}$.

Preliminaries: MRP

Parameters of the Markov reward process

- state space $\mathcal{S}:=\{1, \cdots, S\}$.
- transition probability matrix $\mathbf{P}: \mathcal{S} \times \mathcal{S} \rightarrow[0,1]$.

Preliminaries: MRP

Parameters of the Markov reward process

- state space $\mathcal{S}:=\{1, \cdots, S\}$.
- transition probability matrix $\mathbf{P}: \mathcal{S} \times \mathcal{S} \rightarrow[0,1]$.
- reward function $r: \mathcal{S} \rightarrow \mathcal{P}\left(\left[0, r_{\text {max }}\right]\right)$ and mean rewards as $\overline{\mathbf{r}}: s \mapsto \mathbb{E}[r(s)]$.

Preliminaries: MRP

Parameters of the Markov reward process

- state space $\mathcal{S}:=\{1, \cdots, S\}$.
- transition probability matrix $\mathbf{P}: \mathcal{S} \times \mathcal{S} \rightarrow[0,1]$.
- reward function $r: \mathcal{S} \rightarrow \mathcal{P}\left(\left[0, r_{\text {max }}\right]\right)$ and mean rewards as $\overline{\mathbf{r}}: s \mapsto \mathbb{E}[r(s)]$.
$\left(X_{t}, R_{t}\right)_{t \geq 0}$ is an MRP.

Preliminaries: MRP

Parameters of the Markov reward process

- state space $\mathcal{S}:=\{1, \cdots, S\}$.
- transition probability matrix $\mathbf{P}: \mathcal{S} \times \mathcal{S} \rightarrow[0,1]$.
- reward function $r: \mathcal{S} \rightarrow \mathcal{P}\left(\left[0, r_{\text {max }}\right]\right)$ and mean rewards as $\overline{\mathbf{r}}: s \mapsto \mathbb{E}[r(s)]$.
$\left(X_{t}, R_{t}\right)_{t \geq 0}$ is an MRP.
Note that $\left(X_{t}\right)_{t \geq 0}$ is a Markov chain.

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

- First return time $H_{s}^{+}:=\inf \left\{t>0: X_{t}=s\right\}$.

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

- First return time $H_{s}^{+}:=\inf \left\{t>0: X_{t}=s\right\}$.
- Expected recurrence time $\rho_{s}:=\mathbb{E}_{s}\left[H_{s}^{+}\right]$.

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

- First return time $H_{s}^{+}:=\inf \left\{t>0: X_{t}=s\right\}$.
- Expected recurrence time $\rho_{s}:=\mathbb{E}_{s}\left[H_{s}^{+}\right]$.
- Maximal expected hitting time $\tau_{s}:=\max _{S^{\prime} \in \mathcal{S}} \mathbb{E}_{S^{\prime}}\left[H_{s}^{+}\right]$.

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

- First return time $H_{s}^{+}:=\inf \left\{t>0: X_{t}=s\right\}$.
- Expected recurrence time $\rho_{s}:=\mathbb{E}_{s}\left[H_{s}^{+}\right]$.
- Maximal expected hitting time $\tau_{s}:=\max _{\mathcal{S}^{\prime} \in \mathcal{S}} \mathbb{E}_{\mathcal{S}^{\prime}}\left[H_{s}^{+}\right]$.
- The waiting time for the n-th visit be

$$
W_{n}(s):=\inf \left\{w: n \leq \sum_{t=0}^{w} \mathbb{1}\left[X_{t}=s\right]\right\} .
$$

Preliminaries: stopping times

As conventions, we denote $\mathbb{E}_{s}[\cdot]:=\mathbb{E}\left[\cdot \mid X_{0}=s\right]$ and $\mathbb{P}_{s}[\cdot]:=\mathbb{P}\left[\cdot \mid X_{0}=s\right]$.

- First return time $H_{s}^{+}:=\inf \left\{t>0: X_{t}=s\right\}$.
- Expected recurrence time $\rho_{s}:=\mathbb{E}_{s}\left[H_{s}^{+}\right]$.
- Maximal expected hitting time $\tau_{s}:=\max _{\mathcal{S}^{\prime} \in \mathcal{S}} \mathbb{E}_{{s^{\prime}}^{\prime}}\left[H_{s}^{+}\right]$.
- The waiting time for the n-th visit be

$$
W_{n}(s):=\inf \left\{w: n \leq \sum_{t=0}^{w} \mathbb{1}\left[X_{t}=s\right]\right\} .
$$

- Interarrival times $I_{n}(s):=W_{n+1}(s)-W_{n}(s)$.

Problem formulation

Problem formulation

- Discounted value $v(s):=\mathbb{E}_{s}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]$.

Problem formulation

- Discounted value $v(s):=\mathbb{E}_{s}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]$.
- $v(s)$ satisfies the Bellman equation
$v(s)=\bar{r}_{s}+\gamma \sum_{s^{\prime} \in \mathcal{S}} P_{s s^{\prime}} v\left(s^{\prime}\right)$.

Problem formulation

- Discounted value $v(s):=\mathbb{E}_{s}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]$.
- $v(s)$ satisfies the Bellman equation
$v(s)=\bar{r}_{s}+\gamma \sum_{s^{\prime} \in \mathcal{S}} P_{s s^{\prime}} v\left(s^{\prime}\right)$.
- However, in RL settings, we do not know the MRP parameters and wish to estimate $v(s)$ from a single sample path, i.e., $\left(X_{t}, R_{t}\right)_{0 \leq t \leq T}$.

Assumption: reachability

Assumption: reachability

We assume state s is reachable from all states, i.e., $\tau_{s}<\infty$.

Assumption: reachability

We assume state s is reachable from all states, i.e., $\tau_{s}<\infty$. Otherwise, we cannot hope for a PAC-style error bound under arbitrarily high probability.

Observation: regenerative structure

- The sub-MRPs starting at different visits to state s are the same as stochastic processes.

Observation: regenerative structure

- The sub-MRPs starting at different visits to state s are the same as stochastic processes.
- Loop γ-discounted rewards $G_{n}(s):=\sum_{u=0}^{I_{n}(s)-1} \gamma^{u} R_{W_{n}(s)+u}$.

Observation: regenerative structure

- The sub-MRPs starting at different visits to state s are the same as stochastic processes.
- Loop γ-discounted rewards $G_{n}(s):=\sum_{u=0}^{I_{n}(s)-1} \gamma^{u} R_{W_{n}(s)+u}$.
- Loop γ-discount $\Gamma_{n}(s):=\gamma^{I_{n}(s)}$.

Observation: regenerative structure

- The sub-MRPs starting at different visits to state s are the same as stochastic processes.
- Loop γ-discounted rewards $G_{n}(s):=\sum_{u=0}^{I_{n}(s)-1} \gamma^{u} R_{W_{n}(s)+u}$.
- Loop γ-discount $\Gamma_{n}(s):=\gamma^{I_{n}(s)}$.
- $\left(I_{n}(s), G_{n}(s)\right)$ are IID.

Observation: regenerative structure

- The sub-MRPs starting at different visits to state s are the same as stochastic processes.
- Loop γ-discounted rewards $G_{n}(s):=\sum_{u=0}^{I_{n}(s)-1} \gamma^{u} R_{W_{n}(s)+u}$.
- Loop γ-discount $\Gamma_{n}(s):=\gamma^{I_{n}(s)}$.
- $\left(I_{n}(s), G_{n}(s)\right)$ are IID.
- Denote the expected loop γ-discount as $\alpha(s):=\mathbb{E}_{s}\left[\Gamma_{1}(s)\right]$ and the expected loop γ-discounted rewards as $\beta(s):=\mathbb{E}_{s}\left[G_{1}(s)\right]$.

Results: loop Bellman equation

Theorem (Loop Bellman equations)
We can relate the state value $v(s)$ to itself

$$
\begin{equation*}
v(s)=\beta(s)+\alpha(s) v(s) . \tag{1}
\end{equation*}
$$

Results: loop Bellman equation

Theorem (Loop Bellman equations)
We can relate the state value $v(s)$ to itself

$$
\begin{equation*}
v(s)=\beta(s)+\alpha(s) v(s) \tag{1}
\end{equation*}
$$

Define the n-th loop estimator for state value $v(s)$

$$
\begin{equation*}
\hat{v}_{n}(s):=\hat{\beta}_{n}(s) /\left(1-\hat{\alpha}_{n}(s)\right) \tag{2}
\end{equation*}
$$

where

$$
\hat{\alpha}_{n}(s):=\frac{1}{n} \sum_{i=1}^{n} \gamma^{l_{i}(s)}
$$

and

$$
\hat{\beta}_{n}(s):=\frac{1}{n} \sum_{i=1}^{n} G_{i}(s)
$$

Results: sample complexity

Overall approach:

Results: sample complexity

Overall approach:

- Convergence for $\hat{v}_{n}(s)$ over visits to state s.

$$
\left|\hat{v}_{n}(s)-v(s)\right|=O\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{1}{n} \log \frac{1}{\delta}}\right)
$$

Results: sample complexity

Overall approach:

- Convergence for $\hat{v}_{n}(s)$ over visits to state s.

$$
\left|\hat{v}_{n}(s)-v(s)\right|=O\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{1}{n} \log \frac{1}{\delta}}\right)
$$

- Lower-bound the visits to s by step T. There are at least $\widetilde{\Omega}\left(T / \tau_{s}\right)$-many visits.

Results: sample complexity

Overall approach:

- Convergence for $\hat{v}_{n}(s)$ over visits to state s.

$$
\left|\hat{v}_{n}(s)-v(s)\right|=O\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{1}{n} \log \frac{1}{\delta}}\right)
$$

- Lower-bound the visits to s by step T. There are at least $\widetilde{\Omega}\left(T / \tau_{s}\right)$-many visits.
- Convergence over steps.

$$
\left|\hat{v}_{T}(s)-v(s)\right|=\widetilde{O}\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{\tau_{s}}{T} \log \frac{1}{\delta}}\right)
$$

Results: sample complexity

Overall approach:

- Convergence for $\hat{v}_{n}(s)$ over visits to state s.

$$
\left|\hat{v}_{n}(s)-v(s)\right|=O\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{1}{n} \log \frac{1}{\delta}}\right)
$$

- Lower-bound the visits to s by step T. There are at least $\widetilde{\Omega}\left(T / \tau_{s}\right)$-many visits.
- Convergence over steps.

$$
\left|\hat{v}_{T}(s)-v(s)\right|=\widetilde{O}\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{\tau_{s}}{T} \log \frac{1}{\delta}}\right)
$$

- Convergence of \hat{v}_{T} under ℓ_{∞}-norm.

$$
\left\|\hat{\mathbf{v}}_{T}-\mathbf{v}\right\|_{\infty}=\widetilde{O}\left(\frac{r_{\max }}{(1-\gamma)^{2}} \sqrt{\frac{\max _{s} \tau_{s}}{T} \log \frac{S}{\delta}}\right)
$$

Proof ideas: lower-bounding the visits

The key steps are

Proof ideas: lower-bounding the visits

The key steps are
Lemma (Exponential concentration of first return times (Lee et al, 2013; Aldous and Fill, 1999))

Given a Markov chain $\left(X_{t}\right)_{t \geq 0}$ defined on a finite state space \mathcal{S}, for any state $s \in \mathcal{S}$ and any $t>0$, we have

$$
\mathbb{P}\left[H_{s}^{+} \geq t\right] \leq e \cdot e^{-t / e \tau_{s}}
$$

Proof ideas: lower-bounding the visits

The key steps are
Lemma (Exponential concentration of first return times (Lee et al, 2013; Aldous and Fill, 1999))

Given a Markov chain $\left(X_{t}\right)_{t \geq 0}$ defined on a finite state space \mathcal{S}, for any state $s \in \mathcal{S}$ and any $t>0$, we have

$$
\mathbb{P}\left[H_{s}^{+} \geq t\right] \leq e \cdot e^{-t / e \tau_{s}}
$$

and then we invert to find a lower bound on visits with the help of Lambert W function.

Open problems

- How to extend this idea to MRPs with large state spaces? Null-recurrence?

Open problems

- How to extend this idea to MRPs with large state spaces? Null-recurrence?
- Is the upper bound of TD obtained under a generative model tight in the Markov setting?

More questions?

- Feel free to contact me during or after the conference: dai@ttic.edu
- Join the poster sessions for live Q \& A.
- Scan for related resources (paper, code, slides).

