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Preliminaries: MRP

Parameters of the Markov reward process

I state space S B {1, · · · ,S}.
I transition probability matrix P : S × S → [0, 1].
I reward function r : S → P([0, rmax]) and mean rewards as

r̄ : s 7→ E[r(s)].

(Xt ,Rt )t≥0 is an MRP.
Note that (Xt )t≥0 is a Markov chain.
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Preliminaries: stopping times

As conventions, we denote Es[·] B E[·|X0 = s] and
Ps[·] B P[·|X0 = s].

I First return time H+
s B inf{t > 0 : Xt = s}.

I Expected recurrence time ρs B Es

[
H+

s

]
.

I Maximal expected hitting time τs B maxs′∈S Es′ [H+
s ].

I The waiting time for the n-th visit be
Wn(s) B inf

{
w : n ≤

∑w
t=0 1[Xt = s]

}
.

I Interarrival times In(s) B Wn+1(s) −Wn(s).
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Problem formulation

I Discounted value v(s) B Es

[∑∞
t=0 γ

tRt

]
.

I v(s) satisfies the Bellman equation
v(s) = r̄s + γ

∑
s′∈S Pss′v(s′).

I However, in RL settings, we do not know the MRP parameters
and wish to estimate v(s) from a single sample path, i.e.,
(Xt ,Rt )0≤t≤T .
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Assumption: reachability

We assume state s is reachable from all states, i.e., τs < ∞.
Otherwise, we cannot hope for a PAC-style error bound under
arbitrarily high probability.



Assumption: reachability

We assume state s is reachable from all states, i.e., τs < ∞.

Otherwise, we cannot hope for a PAC-style error bound under
arbitrarily high probability.



Assumption: reachability

We assume state s is reachable from all states, i.e., τs < ∞.
Otherwise, we cannot hope for a PAC-style error bound under
arbitrarily high probability.



Observation: regenerative structure

I The sub-MRPs starting at different visits to state s are the
same as stochastic processes.

I Loop γ-discounted rewards Gn(s) B
∑In(s)−1

u=0 γuRWn(s)+u.

I Loop γ-discount Γn(s) B γIn(s).
I (In(s),Gn(s)) are IID.
I Denote the expected loop γ-discount as α(s) B Es[Γ1(s)] and

the expected loop γ-discounted rewards as β(s) B Es[G1(s)].
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Results: loop Bellman equation

Theorem (Loop Bellman equations)

We can relate the state value v(s) to itself

v(s) = β(s) + α(s) v(s). (1)

Define the n-th loop estimator for state value v(s)

v̂n(s) B β̂n(s)/(1 − α̂n(s)), (2)

where

α̂n(s) B
1
n

n∑
i=1

γIi(s)

and

β̂n(s) B
1
n

n∑
i=1

Gi(s)

.
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Results: sample complexity
Overall approach:

I Convergence for v̂n(s) over visits to state s.

|v̂n(s) − v(s)| = O

 rmax

(1 − γ)2

√
1
n

log
1
δ

 .
I Lower-bound the visits to s by step T . There are at least

Ω̃(T/τs)-many visits.
I Convergence over steps.

∣∣∣v̂T (s) − v(s)
∣∣∣ = Õ

 rmax

(1 − γ)2

√
τs

T
log

1
δ

.
I Convergence of v̂T under `∞-norm.

‖v̂T − v‖∞ = Õ

 rmax

(1 − γ)2

√
maxs τs

T
log

S
δ

.
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 rmax

(1 − γ)2

√
τs

T
log

1
δ

.
I Convergence of v̂T under `∞-norm.

‖v̂T − v‖∞ = Õ
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Proof ideas: lower-bounding the visits

The key steps are

Lemma (Exponential concentration of first return times (Lee
et al, 2013; Aldous and Fill, 1999))

Given a Markov chain (Xt )t≥0 defined on a finite state space S, for
any state s ∈ S and any t > 0, we have

P
[
H+

s ≥ t
]
≤ e · e−t/eτs .

and then we invert to find a lower bound on visits with the help of
Lambert W function.
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Open problems

I How to extend this idea to MRPs with large state spaces?
Null-recurrence?

I Is the upper bound of TD obtained under a generative model
tight in the Markov setting?
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More questions?

I Feel free to contact me during or after the conference:
dai@ttic.edu

I Join the poster sessions for live Q & A.
I Scan for related resources (paper, code, slides).


