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Parameters of the Markov reward process
> state space S :={1,---,S}.
> transition probability matrix P : S x S — [0, 1].
» reward function r : S — P([0, rmax|) and mean rewards as
r: s E[r(s)].
(Xt, Ri)t=0 is an MRP.
Note that (X;):>0 is @ Markov chain.
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As conventions, we denote Eg[-] := E[-|Xo = s] and
Ps[-] = P[-|Xo = s].
> First return time Hy := inf{t > 0 : X; = s}.
> Expected recurrence time pg := Eg [Hi]
> Maximal expected hitting time 7 := maxgcs Es [He .
> The waiting time for the n-th visit be
Wi(s) = inf{w:n< 3, 1[X = s]}.
> Interarrival times I5(s) == Wy11(s) — Wi(s).
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Problem formulation

» Discounted value v(s) := Eg [Z‘t"’zo y’R,].
> v(s) satisfies the Bellman equation
V(s) =Ts + ¥ Xges Pssv(8).
> However, in RL settings, we do not know the MRP parameters

and wish to estimate v(s) from a single sample path, i.e.,
(Xt, Rt)o<t<T-
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Assumption: reachability

We assume state s is reachable from all states, i.e., 75 < 0.
Otherwise, we cannot hope for a PAC-style error bound under
arbitrarily high probability.
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Observation: regenerative structure

v

The sub-MRPs starting at different visits to state s are the
same as stochastic processes.

Loop y-discounted rewards Gp(s) = Zﬁi‘?q YYRw,(s)+u-
Loop y-discount I'(s) = y"(s).

(In(s), Gn(s)) are IID.

Denote the expected loop y-discount as «a(s) := Es[l1(s)] and
the expected loop y-discounted rewards as S(s) := Es[G1(s)].

vV v.v Vv
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Theorem (Loop Bellman equations)

We can relate the state value v(s) to itself
v(s) = B(s) + a(s) v(s). (1)
Define the n-th loop estimator for state value v(s)
Un(8) = Bn(s)/(1 = @n(s)), (2)
where
N 150 i)
an(s) = - Z;y
=

and

Buls) = 7 3" Gi(s)
i=1
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Results: sample complexity
Overall approach:
» Convergence for V,(s) over visits to state s.

[9n(s) - v(s)| = O[“rﬁ—a;)z L log%J.

> Lower-bound the visits to s by step T. There are at least
Q(T/ts)-many visits.
> Convergence over steps.

07(s) = v(s)| = 5( (1@3;)2 773 log 1].

» Convergence of V7 under £,,-norm.
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Proof ideas: lower-bounding the visits

The key steps are

Lemma (Exponential concentration of first return times (Lee
et al, 2013; Aldous and Fill, 1999))

Given a Markov chain (X;)=o defined on a finite state space S, for
any state s € S and any t > 0, we have

P[HS 2 t] < et/

and then we invert to find a lower bound on visits with the help of
Lambert W function.
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Open problems

> How to extend this idea to MRPs with large state spaces?
Null-recurrence?

> Is the upper bound of TD obtained under a generative model
tight in the Markov setting?



More questions?

> Feel free to contact me during or after the conference:
dai@ttic.edu

> Join the poster sessions for live Q & A.

> Scan for related resources (paper, code, slides).
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